The Gas Phase Ion Chemistry of $\mathrm{BH}_{2}{ }^{+}$

Charles H. DePuy, ${ }^{*}{ }^{\dagger}{ }^{\dagger}$ Roustam Gareyev, ${ }^{\dagger}$ Joseph Hankin, ${ }^{\dagger}$ Gustavo E. Davico, ${ }^{\dagger}$ Michèle Krempp, ${ }^{\ddagger}$ and Robert Damrauer*,*
Contribution from the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, 80309-0215, and Department of Chemistry, University of Colorado at Denver, Denver, Colorado, 80217-3364

Received November 24, 1997

Abstract

The reactions of $\mathrm{BH}_{2}{ }^{+}$with hydrogen and some simple hydrocarbons and hydrides have been studied in the gas phase with a tandem flowing afterglow-selected ion flow tube apparatus. Reaction rate constants are reported along with branching ratios for multichannel reactions. The mechanisms of reactions have been elucidated by using deuterium labeling experiments and post-SCF level molecular orbital calculations. A general mechanism for the reaction $\mathrm{BH}_{2}^{+}+\mathrm{RH} \rightarrow \mathrm{HBR}^{+}+\mathrm{H}_{2}\left(\mathrm{R}=\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}, \mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{2} \mathrm{H}_{3}, \mathrm{C}_{2} \mathrm{H}\right)$ is suggested along with alternative and secondary pathways. Predicted intermediates have been generated by independent approaches. The unusual species $\mathrm{BH}_{4}{ }^{+}$and $\mathrm{BH}_{6}{ }^{+}$have been generated and their structures assessed computationally. The role of $\mathrm{BH}_{4}{ }^{+}$in the isotope exchange reaction of $\mathrm{BH}_{2}{ }^{+}$with D_{2} is discussed in detail. Parallels are drawn between reactions of $\mathrm{BH}_{2}{ }^{+}$and $\mathrm{CH}_{3}{ }^{+}$in the gas phase and differences are revealed and discussed.

Introduction

In the gas phase it is often relatively easy to generate and examine the chemistry of ionic species which are unknown in solution. In this paper we describe some of the chemistry of $\mathrm{BH}_{2}{ }^{+}$, an extremely interesting electrophilic species which undergoes many of the same types of reactions as $\mathrm{CH}_{3}{ }^{+}$, but with greater selectivity so that more details of its reaction mechanisms can be uncovered.

Our interest in borohydride cations was aroused by our observation of the host of borohydride anions ${ }^{1}$ which are produced upon ionization of $\mathrm{B}_{2} \mathrm{H}_{6}$ in our flowing afterglowselected ion flow tube (FA-SIFT) instrument, and our subsequent finding that a similarly large number of cations is produced under the same ionization conditions. ${ }^{2}$ Dunbar was the first to note that a myriad of $\mathrm{B}_{n} \mathrm{H}_{m}{ }^{+}$ions are produced upon ionization of $\mathrm{B}_{2} \mathrm{H}_{6}$ in an ICR instrument, ${ }^{3}$ and he was able to show that many of these species were produced by reactions of initially produced borohydride cations with diborane, but he did not investigate reactions of any specific ionic species. The ion chemistry of dialkyl and dialkoxy boron cations is being extensively studied in an ion cyclotron resonance instrument by Kenttämaa et al., ${ }^{4}$ but except for a few studies of $\mathrm{B}^{+},{ }^{5}$ nothing is known about the chemical behavior of the simplest boron cations.

[^0]
Experimental Section

The flowing afterglow-selected ion flow tube (FA-SIFT) instrument and practical details of typical experiments have been described in detail elsewhere. ${ }^{6}$ Diborane was used as a 5% mixture with helium (Matheson). Other reagents were obtained commercially and used without further purification. Measured reaction rate constants are reproducible within $\pm 10 \%$ or better. We estimate the absolute error as $\pm 20 \%$. Branching ratio measurements (for reactions yielding more than one product) were corrected to account for mass discrimination of the quadrupole detection unit.

Calculations were performed with Gaussian 94^{7} and Spartan v.4.0 ${ }^{8}$ software packages on IBM RS-6000 and SGI Indigo ${ }^{2}$ computers, respectively.

Results and Discussion

The spectrum of $\mathrm{B}_{2} \mathrm{H}_{6}$ obtained under low-pressure conditions in a conventional mass spectrometer is dominated by the $\mathrm{B}_{2} \mathrm{H}_{5}{ }^{+}$ ion (parent ion signal is negligible), accompanied by smaller peaks corresponding to its fragmentation. In contrast, in the FA-SIFT instrument where $\mathrm{B}_{2} \mathrm{H}_{6}$ undergoes electron impact ionization in a moderate pressure of flowing helium ($0.1-1$ mTorr of $\mathrm{B}_{2} \mathrm{H}_{6}$ in $200-500$ mTorr of He), a spectrum shown in Figure 1 is typically obtained with many peaks corresponding to mass/charge ratios $(\mathrm{m} / \mathrm{z})$ exceeding that of the parent ion.

[^1](8) Spartan version 4.0; Wavefunction, Inc.

Figure 1. The electron impact ionization mass spectrum of diborane (0.3 mTorr) obtained under flowing afterglow conditions with a helium buffer gas pressure of 350 mTorr . The insert is the expanded view of the $m / z 6-16$ region of the spectrum.

This is indicative of secondary reactions of initially formed simple cations with diborane to form ions which incorporate more boron atoms. An important factor here is the interaction with the helium buffer gas which collisionally cools adducts and products of exothermic reactions which otherwise would dissociate back to simple particles. Therefore, one expects that the appearance of the resulting spectrum will depend on the amount of diborane added and the pressure of helium bath gas. Our studies show that higher flows of $\mathrm{B}_{2} \mathrm{H}_{6}$ and higher pressures of helium in the flow tube produce larger borohydride cluster cations at the expense of small ions. Since our goal is to study one of the smallest ions, we optimized the source conditions to produce large signals of $\mathrm{BH}_{2}{ }^{+}$by using low diborane flows and moderate helium pressures.

Note that the peaks in Figure 1 fall into distinctive groups corresponding to ions that contain the same number of boron atoms but varying amounts of hydrogen. The spectrum is complicated further by the fact that naturally occurring boron consists of an $81: 19$ mixture of ${ }^{11} \mathrm{~B}$ and ${ }^{10} \mathrm{~B}$ isotopes, so that many of the peaks can be mixtures of isotopic but chemically different ions. Several peaks corresponding to products of reactions between traces of water and borohydride cations can also be identified (vide infra).

Let us examine more closely the region of the spectrum corresponding to ions containing one boron atom (the insert in Figure 1). The peak at $m / z 10$ should be a signal solely of ${ }^{10} \mathrm{~B}^{+}$. The next peak, $m / z 11$, can correspond to ${ }^{11} \mathrm{~B}^{+}$and also to ${ }^{10} \mathrm{BH}^{+}$, while $\mathrm{m} / \mathrm{z} 12$ may be a mixture of ${ }^{11} \mathrm{BH}^{+}$and ${ }^{10} \mathrm{BH}_{2}{ }^{+}$. Finally, $m / z 13$ can, in principle, contain ${ }^{11} \mathrm{BH}_{2}{ }^{+}$and ${ }^{10} \mathrm{BH}_{3}{ }^{+}$. However, if ${ }^{10} \mathrm{BH}_{3}{ }^{+}$were contributing to this peak, a peak at $m / z 14\left({ }^{11} \mathrm{BH}_{3}{ }^{+}\right)$would necessarily be present since the ${ }^{11} \mathrm{~B}$: ${ }^{10} \mathrm{~B}$ ratio is $4: 1$. Since $m / z 14$ is not detected, the peak at m / z 13 must be the signal of ${ }^{11} \mathrm{BH}_{2}{ }^{+}$only. From a knowledge of the peak intensities at each m / z under discussion and the fact that $\mathrm{m} / \mathrm{z} 10$ and 13 are monoisotopic ${ }^{10} \mathrm{~B}^{+}$and ${ }^{11} \mathrm{BH}_{2}{ }^{+}$, respectively, we can determine that $m / z 11$ is $97 \%{ }^{11} \mathrm{~B}^{+}$and $3 \%{ }^{10} \mathrm{BH}^{+}$, while $m / z 12$ is $39 \%{ }^{11} \mathrm{BH}^{+}$and $61 \%{ }^{10} \mathrm{BH}_{2}{ }^{+}$. The overall percentage of $\mathrm{B}^{+}, \mathrm{BH}^{+}$, and $\mathrm{BH}_{2}{ }^{+}$produced is 53%, 6%, and 41%, respectively, under these conditions, with the ratio of ${ }^{10} \mathrm{~B}$ and ${ }^{11} \mathrm{~B}$ isotopomers being $1: 4$ for each ion.

One of the most important features of our FA-SIFT instrument is its capability of selecting reactant ions of a single m / z thus separating them from other constituents of a mixture. This allows injection of a pure population of ${ }^{11} \mathrm{BH}_{2}{ }^{+}$ions into the second (reaction) flow tube of the instrument, where their reactions with neutral reagents can be studied. This is illustrated in Figure 2 by a spectrum that shows the products of the reaction of ${ }^{11} \mathrm{BH}_{2}{ }^{+}(\mathrm{m} / \mathrm{z} 13)$ with ethane added to the second flow tube:

Figure 2. The experimental spectrum representing the reaction of ${ }^{11} \mathrm{BH}_{2}{ }^{+}$ion ($\mathrm{m} / \mathrm{z}, 13$) with $\mathrm{C}_{2} \mathrm{H}_{6}$. Product ions are $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BH}^{+}(\mathrm{m} / \mathrm{z} 41)$ and $\mathrm{CH}_{3} \mathrm{BH}^{+}(\mathrm{m} / \mathrm{z} 27)$.

Table 1. Reactions of $\mathrm{BH}_{2}{ }^{+}$in the Gas Phase

	product(s) and reagent branching ratio				secondary reaction	overall rate constant, $\times 10^{10}$ cm
s^{-1} molecule ${ }^{-1}$						

${ }^{a}$ Three-body association in the presence of helium atoms. ${ }^{b}$ Relative to Langevin collision rate constants ${ }^{21}$ for nonpolar neutral reagents and theoretical ADO rate constants ${ }^{22}$ for polar reagents.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{BH}^{+}(\mathrm{m} / z 41)$ and $\mathrm{CH}_{3} \mathrm{BH}^{+}(\mathrm{m} / \mathrm{z} 27)$. A summary of some reactions of $\mathrm{BH}_{2}{ }^{+}$studied is given in Table 1, in which branching ratios for multiple channel reactions and reaction rate constants are also reported.

One important transformation of $\mathrm{BH}_{2}{ }^{+}$that should be mentioned before we proceed with a discussion of its chemical reactions is its collision-induced dissociation (CID). This occurs when the ions are given additional electrokinetic acceleration before injection into the reaction flow tube, so that collisions with helium atoms deliver enough energy to break the ions apart. When injected at laboratory frame kinetic energies above 30 $\mathrm{eV}, \mathrm{BH}_{2}{ }^{+}$exclusively loses a molecule of H_{2} yielding B^{+}. Observation of only ${ }^{11} \mathrm{~B}^{+}$upon CID of ions of $m / z 13$ is a direct confirmation of the isotopic purity of this peak, and in the discussion below we will refer to ${ }^{11} \mathrm{BH}_{2}{ }^{+}$ions as $\mathrm{BH}_{2}{ }^{+}$for simplicity.

The reactions of $\mathrm{BH}_{2}{ }^{+}$are strikingly analogous to those of $\mathrm{CH}_{3}{ }^{+}$. Reactions of $\mathrm{CH}_{3}{ }^{+}$with H_{2} and CH_{4} have been extensively studied both experimentally ${ }^{9,10}$ and computationally. ${ }^{11}$ We have therefore carried out ab initio molecular orbital (MO) calculations on the reactions of $\mathrm{BH}_{2}{ }^{+}$with these reagents for comparison purposes. The computational results are summarized in Table 2, which also includes some results of our

[^2]Table 2. Results of Ab Initio Molecular Orbital Calculations ${ }^{a}$

species $^{\text {b }}$	symmetry	MP2(full)/6-311G(d,p)	$N_{\text {imag }}{ }^{c}$	ZPE ${ }^{\text {d }}$	QCISD(T)/CC-pVTZ	G2	CBS-Q
$\mathrm{BH}_{2}{ }^{+}$(3a)	$D_{\infty h}$	-25.5526	0	0.0178	-25.5651	-25.5568	-25.5543
BH_{4}^{+}(3b)	$C_{2 v}$	-26.7406	0	0.0362	-26.7672	-26.7447	-26.7421
BH_{4}^{+}(3c)	$C_{2 v}$	-26.7121	1	0.0337		-26.7194	
BH_{4}^{+}(3d)	$C_{2 v}$	-26.7307	1	0.0336		-26.7384	
$\mathrm{BH}_{6}{ }^{+}(3 \mathrm{e})$	$C_{2 v}$	-27.9351	0	0.0566	-27.9754	-27.9377	-27.9343
$\mathrm{CH}_{4} \mathrm{BH}_{2}{ }^{+}$(7a)	$C_{2 v}$	-66.0065	0	0.0685			
$\mathrm{CH}_{3} \mathrm{HBH}_{2}{ }^{+}$(7b)	C_{s}	-65.9637	1	0.0636			
$\mathrm{CH}_{3} \mathrm{BH}\left(\mathrm{H}_{2}\right)^{+}$(7c)	C_{1}	-65.9953	0	0.0639			
$\mathrm{CH}_{3} \mathrm{BH}^{+}$(7d)	$C_{3 v}$	-64.8284	0	0.0459			
$\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{BH}_{2}{ }^{+}$(9a)	C_{s}	-105.2312	0	0.0985			
$\mathrm{CH}_{3} \mathrm{HCH}_{2} \mathrm{BH}_{2}{ }^{+}$(9b)	C_{1}	-105.1936	1	0.0945			
$\mathrm{CH}_{4} \mathrm{CH}_{2} \mathrm{BH}_{2}^{+}$(9c)	C_{1}	-105.1949	0	0.0955			
$\mathrm{CH}_{4} \mathrm{CH}_{2} \mathrm{HBH}^{+}(9 \mathrm{~d})$	C_{1}	-105.1747	1	0.0905			

[^3]Table 3. Comparison of Binding Energies $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$ of the First and the Second Hydrogen Molecules to $\mathrm{BH}_{2}{ }^{+}$to Form $\mathrm{BH}_{4}{ }^{+}$ and $\mathrm{BH}_{6}{ }^{+}$, Respectively, Calculated at Different Levels of Theory

	$\mathrm{BH}_{2}{ }^{+}+\mathrm{H}_{2} \rightarrow \mathrm{BH}_{4}^{+}$	$\mathrm{BH}_{4}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{BH}_{6}{ }^{+}$
MP2(full)/6-311G(d,p)	-12.3	-15.1
QCISD(T)/CC-pVTZ	-13.6	-16.2
G2	-13.5	-16.8
CBS-Q	-13.6	-16.4

highest level ab initio ($\mathrm{QCISD}(\mathrm{T}) / \mathrm{CC}-\mathrm{pVTZ}$) and model chemistry (CBS-Q, ${ }^{12} \mathrm{G} 2{ }^{13}$) calculations. Relevant molecular structures are presented in Figures 3, 7, and 9. Table 3 presents a comparison of computational results obtained at different levels of theory for binding energies of two molecules of hydrogen to $\mathrm{BH}_{2}{ }^{+}$(see discussion below). The table shows that the MP2-(full)/6-311G(d,p)//MP2(full)/6-311G(d,p) level of theory adequately describes the energetics of this system, the discrepancy with computationally much more expensive methods being less than $2 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. Therefore, results obtained at the MP2 level are used for discussion of geometries and energetics.

Reactions with $\mathbf{D}_{\mathbf{2}}$ and $\mathbf{H}_{\mathbf{2}}$. When $\mathrm{BH}_{2}{ }^{+}$is allowed to react with D_{2}, moderately fast hydrogen-deuterium exchange occurs to form BHD^{+}and $\mathrm{BD}_{2}{ }^{+}$(Table 1). The branching ratio for these two products is dependent on reaction time, and the value of 0.91:0.09 $\mathrm{BHD}^{+} / \mathrm{BD}_{2}{ }^{+}$was determined by extrapolating the experimental data to zero reaction time. In a mirror experiment ${ }^{11} \mathrm{BD}_{2}{ }^{+}$was generated in the source flow tube by adding D_{2} to the flow of $\mathrm{B}_{2} \mathrm{H}_{6}$ being ionized. This ion $(\mathrm{m} / \mathrm{z} 15)$ was then mass selected and injected into the reaction flow tube to study its isotope exchange reaction with H_{2}. As Table 1 shows, the reverse reaction is slightly slower and the amount of double exchange is correspondingly smaller than for the reaction of $\mathrm{BH}_{2}{ }^{+}$with D_{2}, indicating a primary kinetic isotope effect.

We have investigated this exchange reaction by ab initio MO calculations, and the elucidated mechanism is presented in Figure 4. Reaction of $\mathrm{BH}_{2}{ }^{+}$(I) with D_{2} first leads to a planar adduct (II) (structure \mathbf{b} in Figure 3). In a majority of encounters this intermediate dissociates back to reactants, but occasionally it isomerizes through transition state III (structure \mathbf{c} in Figure

[^4]
a)

b)

c)

d)

e)

Figure 3. Molecular structures of BH_{2}^{+}(a), BH_{4}^{+}(b), $\mathrm{BH}_{6}{ }^{+}$(e), and two transition states of BH_{4}^{+}(c, d) optimized at the MP2(full)/6-311G(d, p) level of theory.

Figure 4. Proposed mechanism for isotope exchange in the reaction of $\mathrm{BH}_{2}{ }^{+}$with D_{2}.
3) into IV. This complex most commonly dissociates to give the primary product of reaction \mathbf{V}, but may in some instances undergo another isomerization to VI, giving rise to some amount of the doubly exchanged product VII.

The energy profile of this process for the symmetric reaction of $\mathrm{BH}_{2}{ }^{+}$with H_{2} is shown in Figure 5. The initial $\mathrm{H}_{2} \mathrm{BH}_{2}{ }^{+}$ adduct is more stable than the reactants by about 13 kcal mol^{-1} (Table 3), while the transition state for isomerization lies slightly above the entrance channel. Consequently, most of the initially formed complex does not have sufficient energy to surmount the barrier, and dissociates back, causing the low efficiency of the exchange reaction. For those molecules that cross the barrier, dissociation is more favorable than further isomerization, so that the majority of product ions formed in a single reactive encounter have undergone exchange of only one hydrogen.

Figure 5. The calculated potential energy profile for the symmetric reaction of hydrogen exchange in $\mathrm{BH}_{2}{ }^{+}$.

The lowest energy structure of the adduct $\mathrm{BH}_{4}{ }^{+}$is planar (structure \mathbf{b} in Figure 3), with $\mathrm{BH}_{2}{ }^{+}$forming a three-center twoelectron bond with the hydrogen molecule. As might be expected from the rather weak bond ($12.3 \mathrm{kcal} \mathrm{mol}^{-1}$, Table 3), the $\mathrm{B}-\mathrm{H} 3$ bond is quite long ($1.446 \AA$, compared to 1.175 \AA for $\mathrm{B}-\mathrm{H} 1$ and $1.173 \AA$ in $\mathrm{BH}_{2}{ }^{+}$), and the $\mathrm{H} 3-\mathrm{H} 4$ distance $(0.808 \AA)$ is only slightly lengthened from its normal distance in H_{2} of $0.738 \AA$. Square planar $\left(D_{4 h}\right)$ and tetrahedral $\left(T_{d}\right)$ structures for $\mathrm{BH}_{4}{ }^{+}$are higher in energy by about 30 and 170 $\mathrm{kcal} \mathrm{mol}^{-1}$, respectively, and do not represent minima on the potential energy surface. Somewhat surprisingly from a steric point of view, an adduct with the H_{2} molecule twisted orthogonal to the $\mathrm{H} 1-\mathrm{B}-\mathrm{H} 2$ plane (structure \mathbf{d} in Figure 3) is less stable than the planar adduct by $4.6 \mathrm{kcal} \mathrm{mol}^{-1}$ and represents a transition state structure for rotation of the H_{2} molecule with respect to the symmetry axis of the adduct.

These computational results and experimental data discussed above are in striking contrast with those for reaction of $\mathrm{CH}_{3}{ }^{+}$ with $\mathrm{H}_{2}\left(\mathrm{D}_{2}\right)$, which has been extensively studied previously. Methyl cation forms an adduct with H_{2} that is bound by 42 $\mathrm{kcal} \mathrm{mol}{ }^{-111}$ and $\mathrm{CH}_{5}{ }^{+}$ion can be observed experimentally in the gas phase ${ }^{9}$ or in superacid media. ${ }^{10}$ Reaction with D_{2} leads to fast isotope exchange with complete scrambling of all hydrogen and deuterium atoms within the reaction complex of $\mathrm{CH}_{3}{ }^{+}$with D_{2}. The calculated central barrier for this process is less than $1 \mathrm{kcal} \mathrm{mol}^{-111}$ (compared to $16 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{BH}_{2}{ }^{+}$). Calculations show that in $\mathrm{CH}_{3}-\mathrm{H}_{2}{ }^{+}$the distance from the carbon atom to the added hydrogen atoms is $1.197 \AA$, just slightly longer than the distance to the native hydrogens (1.093 \AA), and the $\mathrm{H}-\mathrm{H}$ bond is significantly stretched ($0.930 \AA$). There is virtually no barrier to rotation of the H_{2} moiety relative to the $\mathrm{CH}_{3}{ }^{+}$group in this adduct. Most of these differences are easily explained in terms of the lower electrophilicity of $\mathrm{BH}_{2}{ }^{+}$and hence a weaker binding interaction and a less pronounced reactivity. However, the unexpected stability of the planar $\mathrm{BH}_{4}{ }^{+}$adduct compared to its orthogonal conformer and the considerable barrier to rotation of the H_{2} moiety in it ($4.6 \mathrm{kcal} \mathrm{mol}^{-1}$) require additional scrutiny.

Examination of the molecular orbitals of BH_{4}^{+}reveals that in addition to direct bonding by interaction of the σ-bonding molecular orbital of H_{2} with the vacant π-orbital of the boron atom (formation of a 3-center 2-electron bond) there is considerable overlap of the antibonding $\sigma^{*} \mathrm{MO}$ of H_{2} with the lower lying occupied MO of $\mathrm{BH}_{2}{ }^{+}$. This interaction leads to a highest occupied MO of $\mathrm{BH}_{4}{ }^{+}$with the shape presented in Figure 6a. In this HOMO $\mathrm{BH}_{2}{ }^{+}$is effectively donating some of its electron density to the vacant MO of H_{2}. This stabilizing interaction is back-bonding, in the sense that the electron shift occurs in the
direction opposite to normal bonding where the electrophilic boron withdraws electronic density from the occupied σ MO of the dihydrogen molecule. This back-bonding accounts for approximately one-third of the total binding energy of H_{2} to $\mathrm{BH}_{2}{ }^{+}\left(4.6\right.$ out of $\left.12.3 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The overlap and additional bonding do not occur in the conformation of $\mathrm{BH}_{4}{ }^{+}$with H_{2} perpendicular to the plane of $\mathrm{BH}_{2}{ }^{+}$(Figure 6b).

Experimental Observation of $\mathrm{BH}_{\mathbf{4}}{ }^{+}$and $\mathrm{BH}_{\mathbf{6}}{ }^{+} .{ }^{14}$ Although the formation of $\mathrm{BH}_{4}{ }^{+}$is implicated by the isotope exchange reaction of $\mathrm{BH}_{2}{ }^{+}$with D_{2} and predicted computationally, no $\mathrm{BH}_{2} \mathrm{D}_{2}{ }^{+}$(or $\mathrm{BH}_{4}{ }^{+}$) was observed under typical conditions in our instrument (helium buffer gas pressure of 0.5 Torr, neutral reagent densities on the order of 10^{11} particles cm^{-3}). In an attempt to facilitate adduct formation we increased the helium pressure in the reaction flow tube to 0.75 Torr (to enhance collisional cooling of the product of this three-body association reaction) and the H_{2} density to over 10^{15} particles cm^{-3} (to shift the equilibrium of the reaction toward the complex). Indeed, a peak at $m / z 15$, as expected for $\mathrm{BH}_{4}{ }^{+}$, appeared in the spectrum. More surprisingly, a noticeable peak appeared at m / z 17, which corresponds to $\mathrm{BH}_{6}{ }^{+}$, an adduct of $\mathrm{BH}_{2}{ }^{+}$with two molecules of hydrogen. At sufficiently high concentrations of hydrogen the intensity of this peak was even larger than that for $\mathrm{m} / \mathrm{z} 15$.

Although no other positive ions can occur at $m / z 17$ under the experimental conditions employed $\left(\mathrm{OH}^{+}\right.$or $\mathrm{NH}_{2}{ }^{+}$which might be produced from traces of air or water are unstable and would readily react with the huge amounts of H_{2} present), we undertook thorough experiments to prove the formation of the $\mathrm{BH}_{6}{ }^{+}$adduct. No ionic products with $\mathrm{m} / \mathrm{z} 17$ (and $m / z 15$ as well) were observed when $\mathrm{BH}_{2}{ }^{+}$was allowed to react with $\mathrm{H}_{2} \mathrm{O}$, NH_{3}, or CH_{4} (Table 1), which are each conceivable sources of other ions with the same mass-to-charge ratio. Mass-selected injection of isotopically labeled ${ }^{10} \mathrm{BH}_{2}{ }^{+}(\mathrm{m} / \mathrm{z}, 12)$ and its reaction with dihydrogen leads to the formation of the corresponding ions of $m / z 14\left({ }^{10} \mathrm{BH}_{4}{ }^{+}\right)$and $m / z .16\left({ }^{10} \mathrm{BH}_{6}{ }^{+}\right)$. Another indicator of the formation of $\mathrm{BH}_{6}{ }^{+}$is the reaction of $\mathrm{BH}_{2}{ }^{+}$with D_{2} under the same conditions to give ions of $m / z 23\left({ }^{11} \mathrm{BD}_{6}{ }^{+}\right)$, which result from complete $\mathrm{H}-\mathrm{D}$ exchange in $\mathrm{BH}_{2}{ }^{+}$and consequent complexation of two D_{2} molecules.

The structure of $\mathrm{BH}_{6}{ }^{+}$also has been investigated theoretically. By analogy with the structure of $\mathrm{BH}_{4}{ }^{+}$, in which one empty p orbital of $\mathrm{BH}_{2}{ }^{+}$complexes with H_{2}, we assumed that in $\mathrm{BH}_{6}{ }^{+}$ both empty p orbitals are used in complexation to form a neartetrahedral ion, with boron hybridized $s p^{3}$ and with the two H_{2} molecules bonded by 3 -center 2 -electron bonds. Indeed, the optimized structure presented in Figure 3e was found to be an energy minimum. Surprisingly, the binding energy for the second hydrogen molecule ($15.1 \mathrm{kcal} \mathrm{mol}^{-1}$) is greater than that for the first one ($12.3 \mathrm{kcal} \mathrm{mol}^{-1}$) (Table 3). Bond lengths are also somewhat different than in $\mathrm{BH}_{4}{ }^{+}$, the $\mathrm{B}-\mathrm{H} 3$ distance being considerably shorter ($1.386 \AA$ in $\mathrm{BH}_{6}{ }^{+}$versus $1.446 \AA$ in $\mathrm{BH}_{4}{ }^{+}$) and the $\mathrm{H} 3-\mathrm{H} 4$ distance increasing ($0.818 \AA$ in $\mathrm{BH}_{6}{ }^{+}$, as compared to $0.808 \AA$ in $\mathrm{BH}_{4}{ }^{+}$), giving another indication that the second H_{2} is held more tightly. Back-bonding from the $\mathrm{BH}_{2}{ }^{+}$moiety into the antibonding σ^{*} orbitals of the H_{2} molecules also plays a significant role in the stability of $\mathrm{BH}_{6}{ }^{+}$, as shown in Figure 6c, which depicts the HOMO of $\mathrm{BH}_{6}{ }^{+}$. Additional stabilization is also provided by the completion of the electronic octet around the boron atom as two more electrons are brought in by the second hydrogen molecule.

Shortly after the publication of our preliminary report on the experimental observation of $\mathrm{BH}_{4}{ }^{+}$and $\mathrm{BH}_{6}{ }^{+}$and calculations of their structures and energetics, ${ }^{2}$ a theoretical study of these two and some other related boronium ions by Rasul and Olah

Figure 6. The highest occupied molecular orbitals of $\mathrm{BH}_{4}{ }^{+}(\mathrm{a}, \mathrm{b})$ and $\mathrm{BH}_{6}{ }^{+}$(c) as obtained by the Spartan program.
appeared, ${ }^{15}$ predicting that these ions would be stable. Their calculations are in complete agreement with our own.

Although in this paper we show that the chemistry of $\mathrm{BH}_{2}{ }^{+}$ is remarkably similar to that of $\mathrm{CH}_{3}{ }^{+}, \mathrm{BH}_{2}{ }^{+}$is isoelectronic with $\mathrm{CH}_{2}{ }^{2+}$, a species which is so far unknown experimentally. Theoretical investigations ${ }^{16}$ showed that 3 -center 2 -electron bonding of a hydrogen molecule to $\mathrm{CH}_{2}{ }^{2+}$ should lead to a minimum potential energy $\mathrm{CH}_{4}{ }^{2+}$ species with a $C_{2 v}$ structure similar to that of $\mathrm{BH}_{4}{ }^{+}$. In related work, Olah, Schleyer, and co-workers ${ }^{17}$ showed that a $\mathrm{CH}_{6}{ }^{2+}$ species of $C_{2 v}$ symmetry also represents a minimum on the potential energy surface and has a structure close to that proposed above for $\mathrm{BH}_{6}{ }^{+}$.

Reaction with Methane. Methane reacts rapidly with $\mathrm{BH}_{2}{ }^{+}$ by addition and loss of a molecule of H_{2} (Table 1), a reaction seemingly analogous to that of methane with $\mathrm{CH}_{3}{ }^{+}$:

$$
\mathrm{CH}_{4}+\mathrm{CH}_{3}^{+} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}^{+}+\mathrm{H}_{2}
$$

However, when $\mathrm{CH}_{3}{ }^{+}$reacts with CD_{4}, or $\mathrm{CD}_{3}{ }^{+}$with CH_{4}, the proportion of $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} being eliminated is close to random. ${ }^{18}$ This indicates that near-complete scrambling of all hydrogen and deuterium atoms occurs before dissociation of an initially formed adduct. In contrast, reaction of $\mathrm{BH}_{2}{ }^{+}$with CD_{4}, or $\mathrm{BD}_{2}{ }^{+}$with CH_{4}, leads exclusively to loss of HD :

$$
\begin{aligned}
& \mathrm{CD}_{4}+\mathrm{BH}_{2}^{+} \rightarrow \mathrm{CD}_{3}-\mathrm{BH}^{+}+\mathrm{HD} \\
& \mathrm{CH}_{4}+\mathrm{BD}_{2}^{+} \rightarrow \mathrm{CH}_{3}-\mathrm{BD}^{+}+\mathrm{HD}
\end{aligned}
$$

We investigated the origin of this surprising selectivity using theoretical calculations. The structures of key intermediates and transition states for the reaction of $\mathrm{BH}_{2}{ }^{+}$with CH_{4} are shown in Figure 7, and corresponding energies are listed in Table 2. Our calculations indicate the initial formation of a rather strongly bound (about $33 \mathrm{kcal} \mathrm{mol}^{-1}$) adduct (structure a in Figure 7),

[^5]

Figure 7. Molecular structures of species relevant to the reaction of $\mathrm{BH}_{2}{ }^{+}$with CH_{4} obtained from MP2(full)/6-311G(d,p) calculations.
followed by carbon-boron bond formation and hydrogen atom migration leading through transition structure \mathbf{b} (Figure 7) to $\mathrm{CH}_{3} \mathrm{BH}\left(\mathrm{H}_{2}\right)^{+}$(c in Figure 7), a species homologous to $\mathrm{BH}_{4}{ }^{+}$. Because of the stabilizing effect of the methyl group on the adjacent positive charge, the hydrogen molecule in this cation is bound extremely weakly ($<1 \mathrm{kcal} \mathrm{mol}^{-1}$) and is eliminated readily giving the final product (\mathbf{d} in Figure 7). (A similar effect of the methyl group can be found in comparison of $\mathrm{CH}_{5}{ }^{+}$with $\mathrm{C}_{2} \mathrm{H}_{7}{ }^{+}$-in the latter the hydrogen molecule is bound by only $10.6 \mathrm{kcal} \mathrm{mol}^{-1},{ }^{19}$ much weaker than in $\mathrm{CH}_{5}{ }^{+}$.) In the case of deuterium-labeled reagents this rapid dissociation leaves no possibility of hydrogen-deuterium scrambling and one atom of deuterium or hydrogen is lost from each of the heavy atoms, resulting in selective elimination of HD. Other conceivable reaction paths, such as elimination at the carbon atom leading to formation of carbocation $\mathrm{BH}_{2}-\mathrm{CH}_{2}{ }^{+}$, prove to be endothermic and the corresponding structures do not represent minima on the potential energy surface.

The energy diagram for the reaction of $\mathrm{BH}_{2}{ }^{+}$with CH_{4} is shown in Figure 8. Note that the initial adduct lies in a relatively

[^6]

Figure 8. The calculated potential energy profile for the reaction of $\mathrm{BH}_{2}{ }^{+}$with CH_{4}.
deep potential energy well, yet the reaction is rapid because of the high reaction exothermicity and an overall barrier that lies below the entrance channel. Therefore, the initial adduct does not live long enough to collide with helium atoms of the bath gas. Such collisions are necessary for removal of excess energy contained in the complex due to the exothermicity of its formation, and in their absence the reaction quickly proceeds further to products. For this reason no adduct formation was detected in the reaction of $\mathrm{BH}_{2}{ }^{+}$with CD_{4} under the conditions of our flowing afterglow experiments. However, formation of this species can be achieved by an indirect pathway, approaching it from lower energy reagents. We generated $\mathrm{BH}_{4}{ }^{+}$ions in the reaction flow tube by adding H_{2} to injected $\mathrm{BH}_{2}{ }^{+}$(see above) and then added CD_{4} downstream. ${ }^{20}$ The desired adduct ion $(\mathrm{m} / \mathrm{z}$ 33) results by a switching reaction in which CD_{4} replaces H_{2} :

$$
\mathrm{CD}_{4}+\mathrm{BH}_{4}^{+} \rightarrow \mathrm{CD}_{4}-\mathrm{BH}_{2}^{+}+\mathrm{H}_{2}
$$

Because this reaction is exothermic by only $19 \mathrm{kcal} \mathrm{mol}^{-1}$ and because some of this exothermicity can be removed in the form of translational energy of the leaving hydrogen molecule, this reaction does not provide enough energy for $\mathrm{CD}_{4}-\mathrm{BH}_{2}{ }^{+}$to cross the central barrier ($23 \mathrm{kcal} \mathrm{mol}^{-1}$) to dissociation (Figure 8). Collisions with helium quickly stabilize the product of the reaction.

Reaction with Ethane. Ethane reacts even more rapidly than methane with $\mathrm{BH}_{2}{ }^{+}$to form two products corresponding to loss of H_{2} or CH_{4}, respectively:

The first of these reactions is undoubtedly analogous to that with methane; this assumption is supported by our calculations which suggest structures homologous to those in Figure 7 and

[^7]

Figure 9. Molecular structures of species relevant to the reaction of $\mathrm{BH}_{2}{ }^{+}$with $\mathrm{C}_{2} \mathrm{H}_{6}$ obtained from MP2(full)/6-311G(d,p) calculations.

Figure 10. The calculated potential energy profile for the reaction of $\mathrm{BH}_{2}{ }^{+}$with $\mathrm{C}_{2} \mathrm{H}_{6}$.
a reaction profile similar to that in Figure 8 for this channel. Experimental support of this parallelism is seen in the reaction of $\mathrm{BD}_{2}{ }^{+}$with ethane resulting in exclusive loss of HD :

In the same reaction no deuterium atoms are incorporated into the CH_{4} that is lost. Our calculations in conjunction with this experimental fact suggest that the channel leading to methane elimination involves the intermediacy of the structures presented in Figure 9 and has the energy profile presented in Figure 10. Formation of the adduct (structure a in Figure 9) is a common step for both reaction channels, but in contrast to reaction of $\mathrm{BH}_{2}{ }^{+}$with methane there is an alternative of hydrogen shift
from C 1 to C 2 rather than from carbon to boron (compare Figure $9 b$ to Figure 7b). Transition state \mathbf{b} in Figure 9 leads to the complex of methane with a distorted $\mathrm{BH}_{2}-\mathrm{CH}_{2}{ }^{+}$structure (c in Figure 9). Direct dissociation of this complex is highly endothermic because relaxation of the $\mathrm{BH}_{2}-\mathrm{CH}_{2}{ }^{+}$fragment leads to an unfavorable perpendicular conformation of this unstable ion. Instead, the complex in Figure 9c undergoes a concerted isomerization-dissociation through the transition state represented by structure \mathbf{d} in Figure 9, lowering the energetic barrier to products and resulting in stable $\mathrm{CH}_{3} \mathrm{BH}^{+}$.

Reactions with Other Reagents. Fast reactions of $\mathrm{BH}_{2}{ }^{+}$ with some other nucleophiles were also studied and are summarized in Table 1. All of these reactions follow the same general route discussed above for methane and ethane, that is, addition and elimination of a hydrogen molecule:

$$
\begin{aligned}
\mathrm{BH}_{2}^{+}+\mathrm{HR} \rightarrow \mathrm{H}-\mathrm{B}-\mathrm{R}^{+}+ & \mathrm{H}_{2} \\
& \mathrm{R}=\mathrm{OH}, \mathrm{SH}, \mathrm{NH}_{2}, \mathrm{C}_{2} \mathrm{H}_{3}, \mathrm{C}_{2} \mathrm{H}
\end{aligned}
$$

Excess water, ammonia, and hydrogen sulfide engage in a secondary reaction with these initial products and readily abstract a proton:

$$
\mathrm{H}-\mathrm{B}-\mathrm{X}-\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{X} \rightarrow \mathrm{H}-\mathrm{B}-\mathrm{X}+\mathrm{H}_{3} \mathrm{X}^{+} \quad \mathrm{X}=\mathrm{O}, \mathrm{~S}, \mathrm{NH}
$$

The fact that formation of $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{3} \mathrm{~S}^{+}$, and $\mathrm{NH}_{4}{ }^{+}$is indeed caused by secondary reactions, and not by competing direct proton abstraction from $\mathrm{BH}_{2}{ }^{+}$,

$$
\mathrm{BH}_{2}^{+}+\mathrm{H}_{2} \mathrm{X} \rightarrow \mathrm{BH}+\mathrm{H}_{3} \mathrm{X}^{+}
$$

was established by measuring the ratio of the two products $\mathrm{HBXH}{ }^{+}$and $\mathrm{H}_{3} \mathrm{X}^{+}$at various flows of neutral reagents and different reaction times. These parameters influence the number of collisions each ion can experience with molecules of the neutral reagent. As the average number of reactive encounters for each ion approaches unity, the amount of the proton-transfer product decreases to zero and the primary addition-elimination product becomes dominant.

Reaction with ethylene yields the adduct as a minor byproduct.

Conclusions

The title species, $\mathrm{BH}_{2}{ }^{+}$, undergoes a variety of reactions, many of which are similar to those of $\mathrm{CH}_{3}{ }^{+}$. In contrast to the methyl cation, the exothermicity of these reactions of $\mathrm{BH}_{2}{ }^{+}$is moderate and their energy profiles are well defined, enabling a careful mechanistic study.

Along with a general route leading to $\mathrm{HB}-\mathrm{R}^{+}\left(\mathrm{R}=\mathrm{CH}_{3}\right.$, $\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{OH}, \mathrm{NH}_{2}$, etc.) some remarkable reactions were observed for $\mathrm{BH}_{2}{ }^{+}$, such as carbon-carbon bond cleavage in ethane and formation of adducts with one and two molecules of hydrogen.

Acknowledgment. C.H.D. and R.D. thank the National Science Foundation for support (CHE-9421756 for C.H.D. and CHE-9223037 for R.D.).

JA974005G

[^0]: (1) Krempp, M.; Damrauer, R.; DePuy, C. H.; Keheyan, Y. J. Am. Chem. Soc. 1994, 116, 3629-3630.
 (2) DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E.; Damrauer, R. J. Am. Chem. Soc. 1997, 119, 427-428.
 (3) Dunbar, R. C. J. Am. Chem. Soc. 1968, 90, 5676-5682.
 (4) (a) Ranatunga, T. D.; Kenttämaa, H. I. J. Am. Chem. Soc. 1992, 114, 8600-8604. (b) Ranatunga, T. D.; Kenttämaa, H. I. Inorg. Chem. 1995, 34, 18-27.
 (5) (a) Schneider, F.; Zülicke, L.; Polàk, R.; Vojtík, J. Chem. Phys. Lett. 1984, 105, 608-611. (b) Sondergaard, N. A.; Sauers, I.; Jones, A. C.; Kaufman, J. J.; Koski, W. S. J. Chem. Phys. 1979, 71, 2229-2234. (c) Ottinger, C.; Reichmuth, J. J. Chem. Phys. 1981, 74, 928-933. (d) Kemper, P. R.; Bushnell, J. E.; Weis, P.; Bowers, M. T. J. Am. Chem. Soc. Submitted for publication.

[^1]: (6) (a) Van Doren, J. M.; Barlow, S. E.; DePuy, C. H.; Bierbaum, V. M. Int. J. Mass Spectrom. Ion Processes 1987, 81, 85-100. (b) Gronert, S.; O’Hair, R. A. J.; Prodnuk, S.; Sülzle, D.; Damrauer, R.; DePuy, C. H. J. Am. Chem. Soc. 1990, 112, 997-1003. (c) Robinson, M. S.; Polak, M. L.; Bierbaum, V. M.; DePuy, C. H.; Lineberger, W. C. J. Am. Chem. Soc. 1995, 117, 6766-6778.
 (7) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, G. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople J. A. Gaussian 94, Revision C.2; Gaussian, Inc.: Pittsburgh, PA, 1995.

[^2]: (9) (a) Smith, D.; Adams N. G.; Alge, E. J. Chem. Phys. 1982, 77, 12611268. (b) Heck, A. J. R.; de Koning, 1. J.; Nibbering, N. M. M. J. Am. Soc. Mass Spectrom. 1991, 2, 453-458. The results of the cited works discussed here were independently reproduced in our laboratory.
 (10) Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Field, L. D.; Wade, K. Hypercarbon Chemistry; Wiley-Interscience: New York, 1987.

[^3]: ${ }^{a}$ Energies are in hartrees. ${ }^{b}$ Expressions in parentheses refer to the figure number and the structure in that figure. ${ }^{c}$ Number of imaginary vibrational frequencies. ${ }^{d}$ Zero-point vibrational energy correction from MP2(full)/6-311G(d,p) frequencies, unscaled. ${ }^{23}$

[^4]: (11) (a) Schleyer, P. v. R.; Carneiro, J. W. d. M. J. Comput. Chem. 1992, 13, 997-1003. (b) Schreiner, P. R.; Kim, S.-J.; Schleyer, P. v. R.; Schaefer, H. F., III J. Chem. Phys. 1993, 99, 3716-3720. The results of the cited works were reproduced by using the uniform MP2(full)/6-311G(d, p)//MP2-(full)/6-311G(d, p) method for comparison purposes.
 (12) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A., Jr. J. Chem. Phys. 1996, 104, 2598-2619.
 (13) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221-7230.
 (14) For a preliminary account of the results discussed in this section see ref 2 .

[^5]: (15) Rasul, G.; Olah, G. A. Inorg. Chem. 1997, 36, 1278-1281.
 (16) Radom, L.; Wong, M. W. J. Am. Chem. Soc. 1989, 111, 11551166.
 (17) Lammertsma, K.; Barzaghi, M.; Olah, G. A.; Pople, J. A.; Schleyer, P. v. R.; Simonetta, M. J. Am. Chem. Soc. 1983, 105, 5258-5263.
 (18) (a) Weiner, J.; Smith, G. P. K.; Saunders: M.; Cross, R. J., Jr. J. Am. Chem. Soc. 1973, 95, 4115-4120. (b) Lee, H. S.; Bierbaum, V. M.; DePuy, C. H. Int. J. Mass Spectrom. Ion Processes In press.

[^6]: (19) Carneiro, J. W. de M.; Schleyer, P. v. R.; Saunders, M.; Remington, R.; Schaefer, H. F., III; Rauk, A.; Sorensen, T. S. J. Am. Chem. Soc. 1994, 116, 3483-3493.

[^7]: (20) The reaction of BH_{4}^{+}with CH_{4} leads to $\mathrm{CH}_{4}-\mathrm{BH}_{2}^{+}$, which has the same $\mathrm{m} / \mathrm{z} 29$ as HBOH^{+}, the ion always present due to reaction of $\mathrm{BH}_{2}{ }^{+}$ with traces of water in helium buffer gas. The use of CD_{4} gives the easily distinguishable adduct $\mathrm{CD}_{4}-\mathrm{BH}_{2}{ }^{+}$with $m / z 33$.
 (21) Gioumousis, G.; Stevenson, D. P. J. Chem. Phys. 1958, 29, 294299.
 (22) Chesnavich, W. J.; Su, T.; Bowers, M. T. J. Chem. Phys. 1980, 72, 2641-2655.
 (23) No suitable scaling factors are reported in the literature for systems with 3-center 2-electron bonds analogous to the systems studied. So we have not reported scaled zero-point energies. The authors thank a reviewer for pointing this out and for other valuable comments on the calculational part of this work.

